首页> 外文OA文献 >Object-oriented implementation of the Galerkin finite element method and its application to the numerical study of natural convective flows in enclosures
【2h】

Object-oriented implementation of the Galerkin finite element method and its application to the numerical study of natural convective flows in enclosures

机译:Galerkin有限元方法的面向对象实现及其在机壳自然对流流动数值研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using object-oriented programming (OOP) techniques and philosophies, a collection of C++ tools for the rapid development of finite element applications has been created. The Object-Oriented Finite Element Analysis (OOFEA) toolkit provides both the geometrical and mathematical management tools necessary for this task in the form of useful class hierarchies, in particular, the OOFEA toolkit features methods for evaluating arbitrary weak forms provided by the user in order to solve particular problems of interest. A detailed description of the underlying concepts, philosophies and techniques used to develop the toolkit, as well as description of its contents and usage are included. A strong effort has been made to concentrate on its possibly beneficial usage in the computational fluid dynamics area. Hence, a number of sample CFD and heat transfer applications of increasing difficulty and interests are thoroughly discussed. Moreover, to demonstrate the toolkit capabilities of managing complex projects, a simulator for laminar and turbulent natural convective flows in enclosures has been developed and a numerical study of some of these flows has been conducted.Using a primitive variable approach, the Galerkin FEM is used to obtain the weak form of the coupled unsteady Navier-Stokes and energy equations for incompressible, viscous, Newtonian fluids in two and three dimensions. By including a k-$\epsilon$ turbulence model in the governing equations, the analysis of both laminar and turbulent convective flows in enclosures is possible. With the help of a semi-implicit time stepping scheme, combined with a projection scheme, the resulting systems of equations are solved iteratively using the preconditioned conjugate gradient (PCG) algorithm.Time accurate two-dimensional simulations have been performed for a differentially heated square cavity in the laminar and turbulent regimes, for air with a Prandtl number of 0.71, and values of the Rayleigh number ranging between 10$\sp3$ and 10$\sp{10}$. Consistency tests show that the simulator correctly implements the k-$\epsilon$ turbulence model, and the numerical results compare well with results reported in the literature. Furthermore, three-dimensional simulations have been performed for a differentially heated cubic cavity in the laminar regime for air with a Prandtl number of 0.71, and values of the Rayleigh number ranging from 10$\sp3$ to 10$\sp6$. The results obtained compare well with other results in the literature, and characterize some of the three-dimensional effects that are ignored in two-dimensional simulations. In particular, it can be observed that the three-dimensional effects can change the predicted dimensionless heat transfer rate by as much as 10%.
机译:使用面向对象编程(OOP)技术和理念,已创建了用于快速开发有限元应用程序的C ++工具集合。面向对象的有限元分析(OOFEA)工具包以有用的类层次结构的形式提供了此任务所需的几何和数学管理工具,尤其是OOFEA工具包提供了按顺序评估用户提供的任意弱形式的方法解决感兴趣的特定问题。包括对用于开发该工具箱的基本概念,理念和技术的详细描述,以及其内容和用法的描述。已经做出了巨大的努力来集中精力在计算流体动力学领域中可能的有益用途。因此,彻底讨论了越来越多的难度和兴趣的许多样品CFD和传热应用。此外,为了展示工具包管理复杂项目的能力,开发了一种用于封闭环境中层流和湍流自然对流流动的模拟器,并对其中一些流动进行了数值研究。使用原始变量方法,使用Galerkin FEM在二维和三维中获得不可压缩的粘性牛顿流体耦合的非稳态Navier-Stokes和能量方程的弱形式。通过在控制方程中包括k-ε湍流模型,可以对围护结构中的层流和湍流对流进行分析。在半隐式时间步长方案的帮助下,结合投影方案,使用预处理的共轭梯度(PCG)算法迭代求解方程组。对差分加热的正方形进行了时间精确的二维仿真层流和湍流区域的空腔,空气的Prandtl值为0.71,瑞利数的值在10 $ \ sp3 $和10 $ \ sp {10} $之间。一致性测试表明,模拟器正确地实现了k-ε湍流模型,并且数值结果与文献报道的结果具有很好的比较。此外,对层流状态下的差热立方腔进行了三维模拟,空气的普朗特数为0.71,瑞利数的值在10 $ sp3 $到10 $ sp6 $之间。获得的结果与文献中的其他结果很好地比较,并且表征了在二维模拟中忽略的某些三维效应。特别地,可以观察到三维效应可以将预测的无量纲传热率改变多达10%。

著录项

  • 作者

    Moreno, Rafael;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号